Analysis of Performance by Event
The objective of this analysis is to compare the performance of classifier trained to identify accountability specific to an event, vs a classifier trained to identify accountability in general. If there are common features across all events that indicate accountability, then the performance when trained on all the news events should increase (typically more data improves performance).
However, if the performance decreases when the classifier is trained on multiple datasets, this means that it is likely there are not a prominent features that capture the meaning of accountability in general. This could indicate that the annotations of accountability are event specific, or there is not enough data from a variety of different events to capture the generalized representation of accountability.
The results shown in this post also compare sentence vs excerpt level classifiers, and a comparison of different representation and classification algorithms.
Summary of Findings
The main observation, is that there is a wide range of performance results, with some events achieving performance in fscore above 0.8, while some are as low as ~0.5. Also, note that the inter-annotator agreement for the events ranges from 0.6-0.8.
The effect of transitioning from excerpt level to sentence level also decreases performance, but not by as much as the effect of the event.
An additional finding is that the character based representation, and the SVM classifier had the best performance out of the methods tested in this analysis, the the difference between performance in the linear classifiers is almost across all the variations tested is almost negligeable.
The are summarized in tables in the following sections.
Individual Events
Sentence Based
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
event | ||||||||
Charleston | 108.0 | 0.232965 | 0.141681 | 0.000000 | 0.120760 | 0.245000 | 0.357264 | 0.462500 |
Isla Vista | 108.0 | 0.738317 | 0.024722 | 0.693498 | 0.721297 | 0.738237 | 0.750443 | 0.802410 |
Marysville | 108.0 | 0.710327 | 0.028182 | 0.654321 | 0.687905 | 0.710819 | 0.733473 | 0.761905 |
Newtown | 108.0 | 0.363988 | 0.127713 | 0.152091 | 0.245902 | 0.397473 | 0.475519 | 0.560870 |
Orlando | 108.0 | 0.270458 | 0.157829 | 0.000000 | 0.138889 | 0.278532 | 0.418455 | 0.476190 |
San Bernardino | 108.0 | 0.321567 | 0.116414 | 0.096386 | 0.235294 | 0.336304 | 0.421232 | 0.522293 |
Vegas | 108.0 | 0.141236 | 0.115760 | 0.000000 | 0.000000 | 0.121212 | 0.250880 | 0.380952 |
Excerpts
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
event | ||||||||
Charleston | 108.0 | 0.323976 | 0.141580 | 0.050000 | 0.215686 | 0.338462 | 0.448497 | 0.568182 |
Isla Vista | 108.0 | 0.757786 | 0.022385 | 0.722045 | 0.740443 | 0.754337 | 0.777850 | 0.813754 |
Marysville | 108.0 | 0.762653 | 0.060974 | 0.649351 | 0.717634 | 0.768177 | 0.810127 | 0.882353 |
Newtown | 108.0 | 0.413744 | 0.164910 | 0.067797 | 0.337558 | 0.476467 | 0.522574 | 0.599156 |
Orlando | 108.0 | 0.237244 | 0.146436 | 0.000000 | 0.117647 | 0.288018 | 0.354430 | 0.487805 |
San Bernardino | 108.0 | 0.412743 | 0.130067 | 0.121212 | 0.333333 | 0.448881 | 0.500000 | 0.615385 |
Vegas | 108.0 | 0.143728 | 0.152868 | 0.000000 | 0.000000 | 0.080000 | 0.285714 | 0.518519 |
Combined Datasets
Sentences
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
classifier | ||||||||
logregcv | 27.0 | 0.538240 | 0.026181 | 0.502447 | 0.521963 | 0.528771 | 0.563489 | 0.583333 |
logregcv_balanced | 27.0 | 0.560509 | 0.032042 | 0.504496 | 0.532829 | 0.565003 | 0.591144 | 0.606166 |
random_forest_balanced | 27.0 | 0.506861 | 0.008723 | 0.489726 | 0.502209 | 0.505082 | 0.509686 | 0.532418 |
svm_balanced | 27.0 | 0.552539 | 0.026245 | 0.511447 | 0.536557 | 0.550852 | 0.573312 | 0.607453 |
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
vectorizer | ||||||||
1gram | 12.0 | 0.523218 | 0.014292 | 0.502758 | 0.512716 | 0.524475 | 0.531200 | 0.546624 |
3gram | 12.0 | 0.551585 | 0.032038 | 0.504334 | 0.528432 | 0.556689 | 0.574398 | 0.593997 |
char | 12.0 | 0.570441 | 0.031584 | 0.518699 | 0.548608 | 0.579456 | 0.590890 | 0.607453 |
cust_all-1gram | 12.0 | 0.517531 | 0.016412 | 0.496622 | 0.502655 | 0.517321 | 0.532072 | 0.542048 |
cust_all-3gram | 12.0 | 0.548571 | 0.034563 | 0.498834 | 0.518188 | 0.558592 | 0.578283 | 0.590374 |
cust_no_nums-1gram | 12.0 | 0.519189 | 0.017042 | 0.489726 | 0.505752 | 0.520005 | 0.534048 | 0.540292 |
cust_no_nums-3gram | 12.0 | 0.550599 | 0.033735 | 0.505082 | 0.518338 | 0.557842 | 0.578534 | 0.593817 |
cust_only_alpha-1gram | 12.0 | 0.518241 | 0.013186 | 0.501186 | 0.507472 | 0.517567 | 0.526971 | 0.537879 |
cust_only_alpha-3gram | 12.0 | 0.556459 | 0.034341 | 0.506245 | 0.526145 | 0.568348 | 0.578001 | 0.602856 |
Excerpts
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
classifier | ||||||||
logregcv | 27.0 | 0.606388 | 0.029977 | 0.548485 | 0.592954 | 0.600801 | 0.624813 | 0.658854 |
logregcv_balanced | 27.0 | 0.616874 | 0.023957 | 0.576471 | 0.600716 | 0.612943 | 0.629839 | 0.661818 |
random_forest_balanced | 27.0 | 0.470446 | 0.021622 | 0.440141 | 0.454623 | 0.464883 | 0.489271 | 0.507993 |
svm_balanced | 27.0 | 0.614373 | 0.028834 | 0.566914 | 0.590567 | 0.618690 | 0.629487 | 0.670190 |
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
vectorizer | ||||||||
1gram | 12.0 | 0.556811 | 0.060908 | 0.440141 | 0.540708 | 0.577642 | 0.601289 | 0.606838 |
3gram | 12.0 | 0.587291 | 0.075564 | 0.451049 | 0.563028 | 0.620402 | 0.637051 | 0.658854 |
char | 12.0 | 0.600079 | 0.070327 | 0.469178 | 0.579143 | 0.620645 | 0.648738 | 0.670190 |
cust_all-1gram | 12.0 | 0.560850 | 0.062405 | 0.440141 | 0.547690 | 0.587992 | 0.597148 | 0.623542 |
cust_all-3gram | 12.0 | 0.589742 | 0.072032 | 0.457539 | 0.576271 | 0.618028 | 0.633470 | 0.653504 |
cust_no_nums-1gram | 12.0 | 0.555949 | 0.060072 | 0.445614 | 0.536471 | 0.584496 | 0.596083 | 0.604692 |
cust_no_nums-3gram | 12.0 | 0.589490 | 0.070813 | 0.457539 | 0.577209 | 0.620488 | 0.632463 | 0.648438 |
cust_only_alpha-1gram | 12.0 | 0.557290 | 0.060581 | 0.440141 | 0.535464 | 0.579711 | 0.595053 | 0.622642 |
cust_only_alpha-3gram | 12.0 | 0.595678 | 0.071185 | 0.459413 | 0.578810 | 0.623086 | 0.639356 | 0.661433 |